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Abstract— Sign language is one of the most important com-
munication methods when considering equality, diversity, and
inclusion. Sign language understanding implies understanding
sign language using machines, and it involves mainly two func-
tions; sign language recognition and sign language translation.
To improve sign language understanding performance, this
paper proposes to use label smoothing with CTC (Connectionist
Temporal Classification) loss as training criteria for the sign
language understanding neural network. Experimental results
showed the effectiveness of the proposed method in both sign
language recognition and translation.

I. INTRODUCTION

As the native language for deaf and hard-of-hearing people
to communicate, Sign Language (SL) plays an indispensable
role in their daily lives. However, they suffer from language
barriers nowadays and are encouraged to use spoken lan-
guage, i.e., text-based communication and lip-reading. The
truth is that sign language has been developed independently
and does not share the same grammar with their spoken
counterparts [19], which ignores the interests of the deaf
communities who overwhelmingly favor using signed lan-
guages for daily contact in person and online, as well as
when communicating with spoken language groups.

SL understanding has been established with the aim of
better communication between the deaf and hearing commu-
nities. Generally, SL Understanding requires two functions:
Sign Language Recognition (SLR) and Sign Language Trans-
lation (SLT). SLR is to recognize sign actions from given
videos, and SLT is to generate spoken language sentences
from the information embedded in the sign videos or sign
representations.

However, the development between the SLR and SLT is
unbalanced. SL Understanding has been mainly focused on
the visual aspect, with little Natural Language Processing
(NLP) involved, that is, it just recognizes each sign action,
but ignores the information of the spoken syntax behind it.
For this, SLR systems cannot grasp the underlying spoken
grammar and complexity of sign language on their own, and
SLT faces the additional challenge of considering the unique
linguistic features during translation. Although several stud-
ies [2, 3, 21, 23] have been done on the SLT, their attention
is still insufficient. Thus, to achieve better and complete SL
Understanding, we strongly suggest that SLT should be given
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Fig. 1. Sign Language Understanding pipeline. The Sign Language
Understanding system conducts CSLR task as the first step to tokenize the
input video into glosses. The next step is to translate the glosses into the
corresponding spoken language text.

more attention, and it is of great importance to integrate SLR
and SLT tasks for better SL Understanding.

The contributions of this paper can be summarized as
follows:

• We study SL Understanding defined as the integration
of SLR and SLT, providing significant and thorough
insights to the related tasks at hand and pointing out
the future research direction.

• We review public datasets for SL Understanding and
display their features, specifying the limitations of the
publicly available datasets.

• We propose to introduce label smoothing to Connec-
tionist Temporal Classification (CTC) loss as sequence
learning training criteria for SL Understanding to miti-
gate the overfitting problem in SL Understanding, and
experimental results indicates the effectiveness of the
proposed method.

The rest of this paper is organized as follows: Section
II involves the preliminary SL Understanding for a better
comprehension of the whole picture. Section III discusses the
related work. Furthermore, Section IV provides the review
of mainstreaming datasets for SL Understanding. In Section
V, a detailed description of the proposed sequence learning
training criteria for SL Understanding is provided. In the
following Section, we report the evaluation results. Finally,
the conclusion and future research direction are drawn.

II. SIGN LANGUAGE UNDERSTANDING

Despite considerable advancements achieved in machine
translation (MT) between spoken language [6, 22] and com-
puter vision in the classification task [7], SL Understand-
ing lags behind for many reasons. Different from spoken
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language and motion videos, the multidimensional feature
of sign language poses additional challenges for computer
vision because it relies on both manual (i .e., hand shape,
position, movement, orientation of the palm or fingers)
and non-manual (i .e., eye gaze, head-nods/shakes, shoulder
orientations, various types of facial expression as mouthing
and mouth gestures) signals. While spoken language follows
a sequential pattern in which words are processed one at a
time, these cues might happen concurrently. Moreover, signs
fluctuate in space and time, and the number of video frames
corresponding to a single sign is likewise not constant. A
complete SL Understanding system involves the following
sub-tasks:

Sign Language Glossing: Glossing is the process to
transcribe sign language word-for-word by another written
language. Sign language videos can be divided into different
segments, each representing a gloss, a word with an indepen-
dent meaning. As glosses merely indicate what part of the
sign language sentence means but do not form an appropriate
sentence in spoken language, they differ significantly from
spoken text.

Sign Language Recognition: After sign language gloss-
ing, what the SLR system needs to do is recognizing the
gloss meaning. Generally, SLR consists of isolated SLR and
continuous sign language recognition (CSLR) [1]. Isolated
SLR is to identify the isolated single signs in videos, and
is much like action recognition. At the same time, CSLR
is a more challenging task that recognizes the sequence
of glosses that are present in a continuous/non-segmented
video sequence. The input of the sign language model
is high dimensional spatio-temporal data, and the model
needs to understand what a signer looks like and what their
signs mean, and then comprehend what the sign means in
combination.

Sign Language Translation: Once the system has under-
stood the meaning of the sign language video, the final step
is to generate the spoken language sentence. Like any other
natural language, sign languages have their own grammatical
and linguistic structures that frequently do not correspond to
those of their spoken language counterparts. Hence, in a real
sense, this issue is a machine translation work. Figure. 1.
demonstrates the SL Understanding pipeline, the function of
glossing, sign language recognition, and translation.

III. RELATED WORK

Based on the demonstration above, we overview the re-
lated works in SL Understanding in this section.

A. Isolated Sign language recognition

The objective of isolated SLR is to deal with the video
segment classification (where the segment boundaries are
provided), based on the fundamental assumption that a single
gloss is present [4].

B. Continuous Sign Language Recognition

Glosses in sign language have shorter durations than
actions (i .e., they may only contain a very small number of

frames), and the transitions between them are frequently very
subtle, making it difficult to identify their temporal bounds
accurately. Additionally, CSLR is usually characterized as a
weakly supervised learning undertaking due to the lack of
gloss-level annotations.

In most CSLR systems, a feature extractor is typically
followed by a temporal modeling mechanism. The feature
extractor is used to obtain the feature representations from
the individual input frames [5] or sets of neighboring frames
[16]. Meanwhile, the SL unit feature representations (i .e.,
gloss-level and sentence-level) can be modeled thanks to
temporal modeling techniques. Sequence learning for tempo-
ral modeling can be accomplished using HMMs, CTC [11],
or Dynamic Time Warping (DTW) techniques. Given that
CTC has consistently demonstrated superior performance
than the aforementioned ones, it has been established as the
principal sequence training criteria in the majority of CSLR
research. However, CTC often results in overconfident peak
distributions that are prone to overfitting, and provides lim-
ited contribution to the feature extractor’s optimization [24].

Considering the uniqueness of sign language and limi-
tations of available dataset and CTC, CSLR is quite chal-
lenging task. Not only the spatial information from the sign
videos need to be extracted but also it is crucial to take into
account the temporal relationships between different signs in
the videos.

C. Sign Language Translation

Generally, sequence-to-sequence-based SLT methods can
be classified into following protocols:

Gloss2Text: it is a text-to-text task on which the objective
is to translate the ground truth gloss sequences to the spoken
language sentences.

Sign2Gloss→Gloss2Text: Sign2Gloss model is trained
first, and the Gloss2Text model is trained on ground truth
glosses (independently of the Sign2Gloss model), then dur-
ing inference make predictions conditioned on the output of
the Sign2Gloss model. In [2] Camgoz et al . use this protocol
to do SLT, and they assert that Gloss2Text model should
be the upper bound for translation performance, but in this
assertion, ground truth gloss annotations are treat as the fully
understanding of sign language, ignoring the information
bottleneck in glosses.

Sign2Gloss2Text: This is currently the most mainstream
and state-of-the-art approach in SLT. This approach use
the glosses extracted from the sign videos by the CSLR
model. Then, the translation task is converted into text-to-text
problem, which can be solved by utilizing the Gloss2Text
network trained by the CSLR predictions. However, same
as the Sign2Gloss→Gloss2Text, an information bottleneck
is inevitably introduced since this method uses sign glosses
as intermediate supervision.

Sign2(Gloss+Text): When the original sign video is trans-
formed into glosses, some spatio-temporal information is lost
for the following SLT task. To relieve the problem above, [3]
introduced a new protocol: Sign2(Gloss+Text), and this pro-
tocol follow the same naming convention. Sign2(Gloss+Text)
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is the joint learning of continuous sign language recognition
and translation in an end-to-end manner. Camgoz et al ., in-
troduce Transformer to SL Understaing. This model achieves
encouraging results in translation, however, their CSLR per-
formance is sub-optimal, with a higher Word Error Rate than
baseline models, which suggests their model may be weaker
in processing the videos [23] or there are limitations in their
training criteria.

Sign2Text: It is the end goal of SLT. The objective of
sign2text is to translate directly from the continuous sign
videos to spoken language sentences without using any
intermediary representation (e.g ., glosses).

IV. DATASETS

The lack of sufficient annotated datasets is one of the most
significant challenges that has restricted the advancement of
SL Understanding research. Depending on whether annota-
tions are provided at the gloss-level, continuous gloss-level,
or in the form of spoken text, existing SL datasets can be
divided into three categories: isolated SLR dataset, CSLR
dataset, and SLT dataset. Besides, those datasets can also be
classified as Signer Dependent (SD) or Signer Independent
(SI) based on the evaluation scheme. For instance, a signer
cannot be present in both the training and test sets in the SI
datasets. Table I depicts the most well-known public SLR
datasets, together with their essential characteristics.

Isolated SLR Dataset: The isolated SLR datasets are
particularly crucial for certain scenarios (e.g ., creating a sign
language dictionary, or for teaching purposes).

The isolated Signum dataset [20], the isolated Chinese
Sign Language (CSL) Dataset [18], and the isolated Greek
Sign Language (GSL) dataset [1] consist of frequent daily
glosses, and are recorded in the predefined environment.
Meanwhile, the American Sign Language (ASL) dataset [13]
is a real-life large-scale isolated sign language dataset, they
constitute challenging material with large variation in view,
background, lighting and positioning, since they are not
official recordings. The contents of this ASL dataset is from
the ASL tutorial books.

CSLR Dataset: Most of the daily life communications
require continuous sign language, and because of this, a
number of CSLR datasets has been released for linguistic
purposes.

Most CSLR datasets are about interactions between the
deaf in daily life and recorded in prefined enviroments with
stationary equipment.

SLT Dataset: PHOENIX Weather 2014 T
(PHOENIX14T) dataset [2]. It is an extension of the
PHOENIX14 corpus [9], originating from the weather
forecast domain, focusing on sign language translation,
which has recently become the primary benchmark for CSLR
and CSLT. It consists of parallel sign language videos,
gloss annotations and their corresponding translation.
Additionally, How2sign dataset [8] provides multimodal and
multiview continuous American SL for CSLR and SLT.

In summary, the current publicly available datasets are
constrained by one or more of the following:

• Limited vocabulary size.
• Short video or total duration.
• Restricted domain.
• Lack of corresponding spoken language text.

V. PROPOSED METHOD

The goal of SL Understanding (i .e., CSLR and SLT) is to
generate continuous glosses and spoken language text from
sign video.

Given a sign language video V = (v1, ..., vT ) with T
frames, the CSLR model learns the probabilities p(G|V) of
predicting a sign gloss sequence G = (g1, ..., gN ) with N
glosses and a spoken language sentence S = (s1, ..., sX)
with x words. Modeling these conditional probabilities is a
challenging undertaking as it is a sequence-to-sequence task.
Also, the sequence length of the source token is much larger
than that of the target, that is, T ≫ N and T ≫ X . One
way to train the CSLR network would be using cross-entropy
loss with frame level annotations. However, there is no
corpus that has frame-level annotations and constructing such
precisious datasets is also a challenging task. An alternative
form of weaker supervision is to use a sequence-to-sequence
learning loss functions, CTC.

A. Vanilla CTC Criterion

CTC trains the neural network by computing a maximum-
probability training criterion over all possible alignments.
The probability of the possible label sequence is modeled as
being conditionally independent by the product of each label
probability. CTC is widely utilized for labelling unsegmented
sequences (e.g ., speech recognition and optical character
recognition).

In CTC-based CSLR task, CTC introduce blank label,
representing the slience or or transition between two con-
secutive gloss. The extended glosses can be defined as G =
(g1, ..., gN ) ∪ {blank} ∈ RL, where L is the total number
of labels.

The CTC is utilized to compute the p(G|V), marginalizing
over all possible V to G alignment as:

p(G|V) =
∑
π∈B

p(π|V), (1)

where π is a path and B is the collection of all possible paths
that lead to G. The CTC loss in CSLR can be defined as:

Lctc = 1− p(G∗|V), (2)

where G∗ is the ground truth gloss sequence.
Although CTC-based CSLR methods provide remarkable

training convenience, overfitting is one of the main issues
with CTC-based approaches, which results in insufficient
training of the feature extractor.

In sign language, a main problem is large variance, in-
dividual differences tend to be larger than speech, and no
rules in motion between glosses exists. These make sign
languages characterized as data with large variance. Also, the
size of training dataset is extremely smaller than datasets in
other fileds. These are unique properties of sign languages,
especially, the latter property leads to overfitting.
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TABLE I
LARGE-SCALE PUBLICLY AVAILABLE SL UNDSTANDING DATASETS

Datasets Language Signers Vocabulary size Instances Duration(h) Resolution fps Type Modalities

ASL 100 [13] English 189 100 5,736 5.55 Varying Varying Isolated SLR RGB
ASL 1000 [13] English 222 1,000 25,513 24.65 Varying Varying Isolated SLR RGB
CSL SD [12] Chinese 50 178 25,000 100+ 1920x1080 30 CSLR RGB+D
CSL SI [12] Chinese 50 178 25,000 100+ 1920x1080 30 CSLR RGB+D
Isolated CSL [18] Chinese 50 500 125,000 67.75 1920x1080 30 Isolated SLR RGB+D
GSL SD [1] Greek 7 310 10,290 9.59 848x480 30 CSLR RGB+D
GSL SI [1] Greek 7 310 10,290 9.59 848x480 30 CSLR RGB+D
Isolated GSL [1] Greek 7 310 40,785 6.44 848x480 30 Isolated SLR RGB+D
How2Sign [8] English 11 16,000 35,000 79 1280x720 30 CSLR+SLT RGB+D
PHOENIX14 SD [9] German 9 1,231 6,841 10.71 210x260 25 CSLR RGB
PHOENIX14 SI [9] German 9 1,117 4,667 7.28 210x260 25 CSLR RGB
PHOENIX14-T [2] German 9 1,231 8,257 10.53 210x260 25 CSLR+SLT RGB
Signum SI [20] German 25 780 19,500 55.3 776x578 30 CSLR RGB
Isolated Signum [20] German 25 455 11,375 8.43 776x578 30 Isolated SLR RGB

Fig. 2. : An overview of the end-to-end Sign Language Recognition
and Translation transformers [3], Sign Language Recognition Transformer
(SLRT), a vanilla transformer encoder model trained using a CTC loss, to
predict sign gloss sequences. These obtained spatio-temporal representations
from SLRT are then fed to the Sign Language Translation Transformer
(SLTT), an autoregressive transformer decoder model trained by translation
loss to predict one word at a time to generate the corresponding spoken
language sentence.

B. CTC Criterion with Label Smoothing

To mitigate the overfitting problem mentioned above, we
consider adopting a regularization technique called label
smoothing. It introduces noise for the labels and changes
the construction of the true probability. In [14], a CTC with
label smoothing criterion is used for improving end-to-end
speech recognition, and we bring this idea to CSLR.

To do so, we add a regularization term to the CTC
objective function which consists of the Kullback-Leibler
(KL) divergence between the network’s predicted distribution
Pn and a uniform distribution F over labels.

Lctcnew = (1− α)Lctc + α

T∑
t=1

DKL(Pn||F), (3)

where α is tunable parameter for balancing the weight
regularization term and CTC loss.

For the following evaluation, we apply the CTC loss with
label smoothing to [3], and modify their joint loss, the
overview of their model is shown in Figure 2.

In SLT tasks, the SLT model starts to predict one word
at a time until it generates the special end-of-sentence token
< eos >. By breaking down the sequence-level condtional
probability into p(S|V) the ordered conditional probabilities,
and the formula is as follow:

p(S|V) =
I∏

i=1

p(wx|hx), (4)

where p(wx |hx ) denotes the ordered conditional probability
at step x .

As for the translation training loss, we keep cross-entropy
loss for each word as:

LT = 1−
X∏

x=1

D∑
d=1

p(ŵd
x)p(w

d
x|hx), (5)

where p(ŵd
x) is the ground-truth probability of the word w

at step n and D is the target language vocabulary size.
The networks are trained by minimizing the joint loss term

L, which is the weighted sum of the translation loss LT and
the recognition loss LR as follows:

Loriginal = λRLctc + λTLT . (6)

After introducing the CTC loss with label smoothing, the
modified joint loss is defined as follows:

Lnew = λR((1−α)Lctc+α

T∑
t=1

DKL(Pt||F))+λTLT , (7)

where λR and λT are hyperparameters that determine recog-
nition and translation loss functions relative weight during
training, and α is the hyperparameters to decide the weight of
label smoothing, we do the ablation experiments to evaluate
the effect of λR, λT , and α.

VI. EVALUATION

In this section, we conducted the evaluation on the state-
of-the-art sign language model with our proposed criterion.
We first go through the framework of the evaluation model,
and then introduce the evaluation metrics used to measure
the proposed CTC Loss for SL understanding. After that,
we discuss the experimental results.
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TABLE II
IMPACT OF THE LOSS WEIGHT VARIANTS.

Loss Weights w/o Label Smoothing w/ Label Smoothing
λR λT WER BLEU-4 WER BLEU-4
1.0 1.0 42.69 19.94 63.47 20.33
5.0 1.0 28.46 20.55 29.61 21.76

10.0 1.0 28.90 21.04 28.53 21.77
20.0 1.0 32.80 19.67 32.75 19.93

A. Evaluation Model and Set up

We choose the state-of-the-art sign language transformer
(sign2(gloss+text)) [3], a multi-task sign language trans-
former, that jointly train SLR and SLT models at the same
time as the baseline.

In the experiments, we keep the same implementation
as the baseline model with three transformer encoder and
decoder layers, and each layer has 512 hidden units and
8 attention heads. The batch size, initial learning rate, and
dropout rate are set to 32, 1e-3, and 0.1, respectively. To
optimize the model, we employ Adam optimizer [15] with
β1 = 0.9, β2 = 0.998, a learning rate schedule, and early
stopping. We use Xavier initialization [10] and train the
baseline model with the original loss and our proposed loss
from scratch.

B. Evaluation Metrics

As for the evaluation metrics, we follow similar evalu-
ations in speech recognition and MT. The most common
measure of CSLR performance is Word Error Rate (WER),
thus we use to evaluate the performance of our recognition
models. The WER can be computed as:

WER =
S +D + I

N
=

S +D + I

S +D + C
, (8)

where S , D , I , C , and N indicate the number of
Substitutions, Deletions, Insertions, Corrections, and words
in the reference, respectively.

We also used BLEU [17] score (n-grams ranging from
1 to 4), the most used MT metric, to evaluate the final
performance of total training loss Lnew.

C. Results

We conducted the experiments to evaluate our proposed
CTC loss with label smoothing in SL understanding on
the PHOENIX14-T dataset [2], and also we performed the
ablation experiments to verify the effects of hyperparameters
λR, λT , and α.

We first set the label smoothing ratio α to 0.01, and
evaluated the model by changing the λR and λT weights
with and without label smoothing. Table II shows the re-
sults. The BLEU-4 scores get improved after we introduced
the proposed SL understanding loss. For model with label
smoothing, when λR = 10.0 and λT = 1.0, the results were
the best in both CSLR and SLT.

We also verified the impact of label smoothing ratio α, in
the following experiment, we set λR and λT to 5.0 and 1.0,
respectively. Table III illustrates the results of chaning label
smoothing ratio α.

TABLE III
IMPACT OF α VARIANTS

Label Smoothing Weight WER BLEU-4

α = 0.0005 30.03 20.58
α = 0.005 31.44 21.00
α = 0.01 29.61 21.76
α = 0.1 31.86 21.56

D. Discussion

In this section, we evaluated our proposed SL understand-
ing loss, CTC loss with label smoothing, which improved the
baseline model’s performance in SLT on the mainstreaming
PHOENIX14-T dataset.

During experiments, we found that even when the WER
is higher or far higher than that without label smoothing
(i .e., when WER is 29.61 and 63.47), the SLT model still
achieves a better performance, which shows that a perfect
CSLR system is not always necessary to lead to better SLT
outcomes in this SL Understanding task(sign2(gloss+text)).
The addition of label smoothing leads SLR model to extract
more spatio-temporal representations for the following SLT
task.

The results guide us to question the current mainstream-
ing method (Sign2Gloss2Text) in SL Understanding, using
glosses as an intermediate representation to get predicted
translation text, since glosses themselves are sub-optimal
supervisions in SL understanding tasks. The process of con-
verting SL frames into glosses inevitably introduces spatio-
temporal information loss to SL Understanding.

Besides, for the first stage, we only tried limited com-
binations of hyperparameters λR, λT , and α. Still, more
combinations of those hyperparameters need to be explored
in future work.

VII. CONCLUSION

In this paper, we go through the current status of CSLR
and SLT, including their methods, datasets available in the
public, and limitations. We urge that more attention be given
to SLT for better and more comprehensive SL Understanding.

Considering the limitation of CTC-based SL Understand-
ing and the uniqueness of sign language, we modify the
current training loss with label smoothing. We perform eval-
uations on the state-of-the-art SL Understanding Transformer
model using the mainstream dataset, and our proposed loss
leads to better results in terms of the BLEU-4 score.

During experiments, we find that a perfect CSLR model
is not necessary for a well-performed SLT model, since
choosing glosses as mid-representation in SL understanding
may introduce information loss.

End-to-end training, relying less on gloss supervision, is
a promising step towards better results in SL Understanding,
we will continue the work on end-to-end joint training of
the recognition and translation so that the CSLR model can
extract more spatio-temporal representation to optimize the
SLT model. Besides, employing a less information-losing
sign language annotation approach is also worth considering.
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